Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity.

نویسندگان

  • Luis López-Pérez
  • María Del Carmen Martínez-Ballesta
  • Christophe Maurel
  • Micaela Carvajal
چکیده

Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H(+)-ATPase. However, there was no effect of NaCl on water permeability (P(f)) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H(+)-ATPase activity, thereby helping to reduce partially the Na(+) concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H(+)-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane aquaporins mediates vesicle stability in broccoli

The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describ...

متن کامل

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry.

Plasma membrane Intrinsic Proteins (PIPs), a subfamily of aquaporins, are ubiquitous membrane channel proteins that play a crucial role in water uptake in plants. The use of high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) analysis of peptides has previously shown to be a valuable tool to differentiate among PIP homologues sharing a high sequence homology ...

متن کامل

A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.

A mutant line of Arabidopsis thaliana that lacks a vacuolar membrane Zn(2+)/H(+) antiporter MTP1 is sensitive to zinc. We examined the physiological changes in this loss-of-function mutant under high-Zn conditions to gain an understanding of the mechanism of adaptation to Zn stress. When grown in excessive Zn and observed using energy-dispersive X-ray analysis, wild-type roots were found to acc...

متن کامل

Early induction of phenolic compounds in aluminum-treated roots of Brassica oleracea L. Roya Saghian1 and Faezeh Ghanati2*

There are evidences showing that adverse impacts of aluminum (Al) on plants growth and development are associated with its effect on plasma membrane and cell wall. Influence of Al on peroxidation of membrane lipids, wall-bound phenolics, lignin, soluble phenolics and the activity of certain enzymes involved in metabolism of phenols, i.e., phenylalanine ammonia lyase (PAL) and polyphenol oxidase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytochemistry

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2009